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1 Introduction

The Small Area Health Insurance Estimates (SAHIE) program at the U.S. Census
Bureau produces estimates of numbers and proportions of those with and without
health insurance coverage for demographic groups within states and counties. The
demographic groups are defined by age, sex, and income, and in addition, for states
by race and ethnicity. Income groups are defined in terms of income-to-poverty ratio
(IPR), which is the family income divided by the appropriate federal poverty level.

For 2010 through 2016, SAHIE publishes estimates for states for the following do-
mains:

(1) The full cross classification of:

• Four age categories: 0-64, 18-64, 40-64, 50-64. A fifth age category, 21-64,
was added in release year 2014.

• Four race/ethnicity categories: all races, Hispanic, White not Hispanic,
Black not Hispanic.

• Three sex categories: all sexes, male, female.

• Five income groups: all incomes, and IPR categories 0-138%, 0-200%,
0-250%, and 0-400%. A sixth IPR category, 138-400%, was added in
release year 2012.

(2) Age category 0-18 in all incomes and in IPR categories 0-138%, 0-200%, 0-
250%, 0-400%, and 138-400% (added in 2012).

The domains for which SAHIE produces county estimates are nearly the same as
those for states except SAHIE does not produce county estimates by race/ethnicity.
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The choice of domains is motivated by the needs of one of SAHIE’s sponsors, the
Centers for Disease Control and Prevention (CDC). The CDC has cancer screen-
ing programs for which the eligible population is low-income, uninsured women in
specified age groups (SAHIE Team 2008). In addition, the age 0-18 low-income cat-
egories are relevant to the Children’s Health Insurance Program (CHIP). Because
the SAHIE models produce estimates for disjoint groups covering virtually everyone
under age 65, we release estimates for men and women as well as children, and for
other aggregates of possible interest.

The choice of the income groups 0 to 200 percent IPR and 0 to 250 percent
IPR is motivated by the needs of the CDC and CHIP. The income groups 0 to 138
percent IPR, 0 to 400 percent IPR, and 138 to 400 percent IPR are responsive to the
needs of recent heath care legislation. The Patient Protection and Affordable Care
Act helps families gain access to health care by allowing Medicaid to cover families
within income group 0 to 138 percent of the federal poverty level. Also, families with
incomes from 138 to 400 percent of the federal poverty level can receive tax credits
that will help them pay for health coverage in the new health insurance exchanges.

In the sections to follow, we describe in detail the models used to produce the
SAHIE estimates.

2 Overview of SAHIE modeling

2.1 The “base” level

We publish estimates for groups that sometimes overlap or are contained in one
or another domain. However, actual modeling is done at a “base” level at which
domains are disjoint, and are chosen so that the estimates needed for publication
can be obtained as needed by aggregation.

For example, for states, we do the actual modeling for the full cross-classification
of:

• Six age categories: 0-17, 18, 19-20, 21-39, 40-49, 50-64. Prior to release year
2014, age group 19-39 was not split into age groups 19-20 and 21-39.

• Four race/ethnicity categories: White not Hispanic, Black not Hispanic, His-
panic, and not Hispanic.

• Two sex categories: male, female.

• Five income groups: 0-138% IPR, 138-200% IPR, 200-250% IPR, 250-400%
IPR, and 400% IPR and above.

2.2 Two proportions to estimate

Let the acronym ARSH (age, race, sex, Hispanic origin) denote, for states, age by
race/ethnicity by sex, and for counties, age by sex.
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For states and counties, we have demographic population estimates for ARSH
groups that we treat as unbiased and measured without error. To obtain estimates
of the numbers with and without health insurance for states and counties within
ARSH groups, we estimate two sets of proportions. Within each state or county by
ARSH group, denoted by a, we estimate the proportions in each of the five income
groups, pIPRai , i = 1, . . . , 5. In each ARSH by income group (a, i), we estimate the
proportion insured, pICai . The number in ARSH by income group (a, i) is the product
of pIPRai and the population for ARSH group a. The number insured is the product
of pICai and the number in the ARSH/income group.

The SAHIE model consists of two largely distinct parts corresponding to these
two proportions. We refer to the two parts of the model as the “income” and
“insurance” parts.

2.3 Modeling survey data

The SAHIE model is an “area level” model (Rao 2003) in that it uses survey esti-
mates for areas or domains of interest rather than individual responses, and it uses
other data that are aggregates rather than for individuals. Each of the two parts of
the SAHIE model is similar to a well-known small area area-level model, the Fay-
Herriot model. The Fay-Herriot model is a hierarchical model in which the variables
of interest occupy a “middle” level, between high-level parameters such as regression
coefficients, and observed data. Let θi, i = 1 . . . n be the variable of interest, and θ̂i
be a survey estimate of θi. A simple version of the normal Fay-Herriot model can
be written

θ̂i = θi + εi (1)

θi = xTi β + ui (2)

where εi
indep∼ N (0, vSi ) and ui

indep∼ N (0, vMi ).
The εi are sampling errors with sampling variances vSi . The ui can be viewed

as model errors, or as area-specific random effects, with model variance vMi . All
the εi’s are independent of all the ui’s. The equation in (1) is referred to as the
“sampling model” and the equation in (2) is the “linking model.”

In a frequentist context, assuming the sampling and model variances are known,
it can be shown that the best linear unbiased predictor (BLUP) of each θi is a
weighted average of the survey estimate and the regression prediction:

θ̂BLUPi = γix
T
i β̂ + (1− γi)θ̂i (3)

with γi =
vSi

vSi + vMi
. (4)

Here β̂ is the usual weighted least squares estimate from the regression of the θ̂i’s on
the xi’s. Note that γi becomes closer to one as the model variance becomes smaller
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relative to the sampling variance, so that the BLUP estimate of θi is primarily the
regression prediction estimate xTi β̂. Complementarily, γi becomes closer to 0 when
the model variance becomes large relative to the sampling variance, so that the
BLUP estimate is primarily the survey estimate θ̂i.

A similar result holds in the Bayesian context. Conditional on the β’s and
variances, the mean of each θi is a weighted average of θ̂i and a regression prediction

xTi β, with the weight on xTi β being
vSi

vSi + vMi
.

In addition to the fact that the SAHIE model contains two parts, each of which
is similar to a Fay-Herriot model, there are several differences between the SAHIE
model and a standard Fay-Herriot model:

• In both the income and insurance parts of the model, we model a survey
estimate p̂ of the proportion p, but we assume that the logit of p satisfies
a normal linear model. The sampling model and the linking model are not
“matched.”

• The survey estimates of the proportions in the income groups within an ARSH
group are not independent. There are five income groups within each ARSH
group. The survey estimates for those five must add to one. We model four
of them, and assume the correlations correspond to those of a multinomial
distribution.

• In the insurance part of the model, we do not assume that the logits of the pro-
portions are independent. We instead assume that they have a block diagonal
variance matrix with identical blocks.

• In the insurance part of the model, we do not assume that the survey estimates
p̂ are normally distributed, but instead that they follow a mixture of discrete
and continuous distributions.

• We model as random some auxiliary data rather than treat them as fixed
predictors in a regression.

In later sections, we give details of the model, including details of the items
above. In the next section, we give a fuller discussion of the last item above.

2.4 Modeling auxiliary data

One large difference between the SAHIE model and the standard Fay-Herriot model
in (1) and (2) is in how some non-survey data are used. In small-area models such
as the Fay-Herriot model, “auxiliary” (i.e, non-survey) data are typically used as
covariates to help predict the variables of interest. In the standard Fay-Herriot
model, these covariates occur as fixed predictors as in the xi in (2).
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Fisher and Gee (Fisher 2003 and Fisher and Gee 2004) proposed an alternative
in the context of estimating poverty. In their research for the Small Area Income
and Poverty Estimates program, they developed an alternative to the usual Fay-
Herriot model, that they refer to as an “error-in-variables” model. In their model,
they treat the covariates as measures of the quantity of interest, θ (log poverty in
their example), that are possibly biased and have random error. Let i index the
observations and j = 1, . . . p index the p auxiliary data. Their model is

θ̂i = θi + ei (5)

Aij = bj + cjθi + uij j = 1, . . . , p (6)

θi ∼ N (µi, v
θ
i ) (7)

where the ei and uij are mean zero error terms that are normal with variances that
possibly depend on parameters. In this approach, the auxiliary data Aij are treated
in a way very similar to survey estimates. The primary difference is that they are
not unbiased measures of θi, and thus the model includes the unknown parameters
bj and cj.

A feature of the model in (5) - (7) is that the influence of θ̂i and the Aij on the
estimate of θi can vary observation to observation, depending on the relative sizes
of the variances. This is an extension of the property noted in (3) and (4) in which
the influences of the survey estimate and a regression prediction vary depending on
the relative magnitude of their variances.

The approach of Fisher and Gee was extended to small area estimates of insur-
ance coverage in Fisher, O’Hara, and Riesz (2006). The SAHIE model includes both
fixed predictors xi of the quantities of interest and auxiliary data to be modeled,
Ai = (Ai1, . . . , Aip)

T .
The Ai are possibly nonlinear regressions of the θi, and the θi are modeled by

a generalized linear model. The two parts, income and insurance, of the SAHIE
model each have the form

θ̂i = θi + ei

Aij = hj (θi) + uij j = 1, . . . , p

g (θi) = xTi β + vi .

where the ei, uij, and vi are error terms terms with mean zero and variances that
depend on parameters, and that are independent except for exceptions noted later.

3 The primary data

We use the following primary data sources for states and counties.
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Single-year ACS direct estimates. We have two sets of direct estimates from
the American Community Survey:

• Estimates of the number in each of the five IPR categories by ARSH(age by
race/ethnicity by sex categories for states, and by age and sex categories for
counties).

• Estimates of the proportions insured in ARSH by income categories.

5-year ACS direct estimates. We use ACS 5-year direct estimates spanning
the five years prior to the release year of the number in geography/ARSH/IPR
categories.

Federal Tax Returns data. We use the number of Internal Revenue Service
(IRS) exemptions in age by IPR categories in each state and county. The age
categories are 0-18 and 19-64. We do not have actual ages for the IRS data. We use
the number of child exemptions as a proxy for age 0-18.

Supplementary Nutrition Assistance Program data. For each state and
county, we use counts of the number of people participating in the Supplemen-
tal Nutrition Assistance Program (SNAP, formerly Food Stamps) from the United
States Department of Agriculture.

Medicaid/CHIP participation data. We use Medicaid participation records
from the Centers for Medicare and Medicaid Services (CMS). States submit their
data to the CMS quarterly. Individuals are in the file if Medicaid covered them
for at least one day during the quarter. We have Children’s Health Insurance Pro-
gram (CHIP) participation counts from states gathered from a web page of the
Centers for Medicare and Medicaid Services (CMS). We combine the Medicaid and
CHIP participation data, and use the combined data for each state and county in
cross-classifications of age by sex. Due to availability, the 2012 and 2013 releases
used Medicaid/CHIP data from two years prior to the release year. Beginning
with the 2014 release, Medicaid/CHIP data is projected to reflect the release year
since its relationship with poverty may have been affected by reforms related to
the Patient Protection and Affordable Care Act. SAHIE 2013 was reissued using
Medicaid/CHIP data that incorporated the new projection methodology in order
to preserve its comparability with SAHIE 2014. Note that the original SAHIE 2013
estimates will remain available online along with this reissue.

Demographic population estimates. We use demographic estimates of the
resident population from the U.S. Census Bureau’s Population Estimates Program.
These estimates are published for the nation, states, and counties by age, sex, race,
and Hispanic origin.
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County Business Patterns. For counties, we use the proportions of adults em-
ployed by non-retail firms with 19 employees or less and non-retail firms with 100
employees or more.

Census 2010. For counties, we use the Census 2010 proportions of housing units
which are rural and housing units which are resident-owned.

See https://www.census.gov/programs-surveys/sahie/technical-documentation/model-
input-data.html for more information about these data sources.

4 Model details

In this section, we describe in detail the components of the SAHIE model for states.
There are some differences in the modeling of counties that we describe later. We
use the following notation:

• “ACS estimate” refers to the single year ACS estimate unless it is specified to
be the ACS 5-year estimate.

• ARSH (age, race, sex, Hispanic origin) refers to either an age by race by sex
(for states) or an age by sex (for counties) category.

• a indexes state or county by ARSH category.

• i indexes IPR category.

• Sj denotes the sample size (number of persons for which data were collected)
for the jth category.

• POP denotes a demographic population estimate.

• N denotes a number of people. N IPR
ai denotes the number of people in the ath

state or county by ARSH and ith IPR category, and N IC
ai denotes the number

of people with health insurance coverage in the ath state or county by ARSH
and ith IPR category. NUI

ai ≡ N IPR
ai −N IC

ai is the number uninsured.

• pIPRai ≡ N IPR
ai /POPa is the proportion among those in the ath state or county

by ARSH group who are in the ith IPR category.

• pICai ≡ N IC
ai /N

IPR
ai is the proportion among those in the state or county by

ARSH by IPR category (a, i) who have health insurance coverage.

• β denotes regression parameters that appear in a model for the proportion in
an IPR category or a model for the proportion insured.

• α denotes a mean parameter, i.e., a parameter that appears in a model for the
mean of the ACS 5-year or administrative record data.
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• λ denotes a variance parameter, i.e., a parameter that appears in the model
for the sampling variance of the ACS estimates, or in a model for the variance
of the ACS 5-year or administrative record data.

• Hatted variables such as p̂IPRai denote direct survey estimates.

• Overlines such as MED denote means.

The parameters α and λ typically depend on one or more of the age, race/ethnicity,
sex, or IPR categories. We suppress indices that show these dependencies.

The income part of the model allows us to estimate pIPRai , the proportion of people
in IPR category i, within state or county by ARSH category a. The number of people
within the state or county by ARSH by income group is given byN IPR

ai = pIPRai POPa.
The insurance part of the model allows us to estimate pICai , the proportion insured
within state or county by ARSH by IPR category ai. We combine these to estimate
the primary quantities of interest, N IC

ai andNUI
ai , the number insured and the number

uninsured, where

N IC
ai = pICai N

IPR
ai and

NUI
ai = (1− pICai )N IPR

ai .

4.1 The income part of the state model

4.1.1 Modeling ACS estimates of proportions in income groups

In the first part of the income model, we model p̂IPRai , the ACS estimate of the
proportion in IPR category i within state by ARSH category a. We assume that
these ACS estimates are unbiased and normally distributed. Note that for any a,∑5

i=1 p̂
IPR
ai = 1. For this reason, we model four of the five IPR categories, and do not

treat those four as independent. We assume a parametric model for the variances,
and assume the correlations correspond to those of a multinomial distribution. The
model for the ACS estimates of proportions in IPR categories is as follows:

(p̂IPRa1 , . . . , p̂IPRa4 )′| pIPR, λ ∼ N ((pIPRa1 , . . . , pIPRa4 ), ΣIPR
a )

(
ΣIPR
a

)
ii

=
λ0p

IPR
ai (1− pIPRai )

Sλ1a
, i = 1, . . . , 4

(
ΣIPR
a

)
ij

= ρaij

√
(ΣIPR

a )ii (Σ
IPR
a )jj

where ρaij = −

√
pIPRai pIPRaj

(1− pIPRai )(1− pIPRaj )
i 6= j
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where the parameters λ0 and λ1 vary by age. When the sample size is 1, (ΣIPR
a )ii

is set to pIPRai (1− pIPRai ).

4.1.2 The regression part of the income model

We assume that pIPRai , the proportion of those in state by ARSH group a who are
in IPR group i, follows a five-category logistic model with normal errors. Let XIPR

be a matrix of fixed predictors with rows (xIPRai )T . Then the following is the model
for pIPRai :

pIPRai =
exp(µIPRai )∑5
i=1 exp(µIPRai )

µIPRai | βIPR, vM,IPR indep∼ N
(
(xIPRai )TβIPR, vM,IPR

)
where (xIPRa5 )T = 0 for all a and the model variance vM,IPR is the same for all a and i.

The predictors in XIPR for states are as follows:

• Main effects for IPR.

• Two-way interactions between age and IPR, between race/ethnicity and IPR,
and between sex and IPR.

• Two-way interactions between IPR and the following continuous variables:

– Logit of the proportion who are Hispanic in the state, from demographic
population estimates.

– State mean log IPR, from tax records.

– State variance of log IPR, from tax records.

• Three-way interaction among age, race/ethnicity, and IPR.

• Three-way interaction among age, sex, and IPR.

• Three-way interactions among age, IPR, and the previously mentioned con-
tinuous variables.

4.1.3 Modeling state ACS 5-year estimates, IRS exemptions, and SNAP
counts

We model the means of the ACS 5-year estimates, the IRS exemptions, and the
SNAP counts as functions of N IPR

ai , the number of people in IPR category i, within
state by ARSH, a.
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4.1.4 Modeling ACS 5-year estimates for states

We model the ACS 5-year estimates, ACS5IPRai , of the number of people in state
by ARSH by IPR categories. We assume these estimates have means, ACS5ai, that
are linear functions of the N IPR

ai , and are conditionally independent. Then

ACS5ai|N IPR, α, λ
indep∼ N (ACS5ai, vai), where

ACS5ai = (α0 + α1)N
IPR
ai

vai = λ0ACS5
λ1
ai .

The α’s and λ’s are parameters to be estimated. The parameter α0 varies by age
by race/ethnicity, while α1 varies by age by IPR. The variance parameter λ0 varies
by age by IPR, and λ1 does not vary by category.

4.1.5 Modeling IRS exemptions for states

From the IRS, we have the number of IRS exemptions by state by two approximate
age categories (0-18 and 19-64, referred to as “age2”) by IPR categories. The age2
categories are approximate because the number that we use for the age 0-18 category
is actually the number of child exemptions.

We assume that the numbers of exemptions are normally distributed with a mean
that is a linear function of aggregate N IPR

ai ’s, and are conditionally independent.
Let TAXti be the number of IRS exemptions in state by age2 category t and IPR
category i. Then

TAXti|N IPR, α, λ
indep∼ N

(
TAX ti, vti

)
TAX ti = αN IPR

ti

vti = λ0TAX
λ1
ti

where N IPR
ti is the number of people in state by age2 by IPR category ti. N IPR

ti

is obtained by summing N IPR
ai over the appropriate age, race/ethnicity, and sex

categories. The parameters α and λ0 vary by age2 by IPR, and λ1 does not vary by
category.

4.1.6 Modeling SNAP participation for states

SNAPs is the number of SNAP participants by state. We model the mean, SNAP s,
as a linear function of the number of people in the state in the 0-138 percent IPR
category. We assume that the SNAPs’s are normally distributed and conditionally
independent. Let s index state. Then

SNAPs|N IPR, α, λ
indep∼ N

(
SNAP s, vs

)
SNAP s = αN IPR

s1

vs = λ0SNAP
λ1
s .
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Here N IPR
s1 is the number of people in a state in the 0 - 138% IPR category. The

parameters α, λ0, and λ1 do not vary by category.

4.2 The insurance part of the state model

In the insurance part of the model, we model ACS estimates of pICai , the proportion
insured in the state by ARSH by IPR category, and the combined Medicaid/CHIP
data. From this part of the model, we obtain estimates of pICai , the proportion
insured in state by ARSH by IPR category ai. This enables us to estimate our
primary quantities of interest, the number insured and the number uninsured in
state by ARSH by IPR category ai, by

N IC
ai = pICai N

IPR
ai and

NUI
ai = (1− pICai )N IPR

ai .

4.2.1 Modeling the ACS estimates of the proportion insured

Proportions insured are often close to one. ACS estimates of proportions insured
are often one, sometimes zero, and are bounded between zero and one. Rather than
assume normality, we model the ACS estimates of proportions insured in a way to
capture that they are bounded and have positive probability mass at zero and one.
We use the term “three-part model” for the model we use, following Pfeffermann et
al. (2008) who use the term “two-part model” to refer to a similar model.

We model the probability that p̂ICai is one, the probability that p̂ICai is zero, and

conditional on 0 < p̂ICai < 1, we assume that p̂ICai follows a beta distribution. Let p
(0)
ai

and p
(1)
ai be the probabilities that p̂ICai is zero and one. The model is

p̂ICai | pIC , λ, ζ


= 0 with probability p

(0)
ai

= 1 with probability p
(1)
ai

∼ Beta(aai, bai) with probability 1− p(0)ai − p
(1)
ai

(8)

with

var(p̂ICai ) =
λ0p

IC
ai (1− pICai )

Sλ1ai
(9)

p
(0)
ai = (1− pICai )1+ζ0(Sai−1) (10)

p
(1)
ai = (pICai )1+ζ1(Sai−1) (11)

where Beta denotes the beta distribution. When sample size is 1, we set (9) to
var(p̂ICai ) = pICai (1− pICai ). The parameters λ0 and λ1 vary by age by IPR, as do the
parameters ζ0 and ζ1. Note that the parameters, aai and bai, of the beta distribution
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in (8) are functions of pICai , p
(0)
ai , p

(1)
ai and var

(
p̂ICai
)
. We chose the functions for the

variance and the probabilities of zero and one in (9) - (11) by starting with what the
variances and probabilities of zero and one would be under simple random sampling,
and introducing parameters to accommodate the effects of non-independence due
to the sample design and correlated responses. Bauder and Szelepka (2011) consid-
ered various groups of observations and compared within groups the predicted and
actual frequencies of survey estimates of zero and one. They found close agreement,
confirming the choice of functions in (10) and (11).

4.2.2 The regression part of the insurance model

The model for the proportions insured is logistic-normal with a multivariate error
structure. Let µICa = (µICa1 , . . . , µ

IC
a5 )T , and let X(a) be the matrix made up of the five

rows (xICa1 )T , . . . , (xICa5 )T , and XIC the data matrix obtained by stacking the X(a)’s.
Then the following is the model for pICai :

pICai = logit−1
(
µICai
)

µICa | β,ΣIC indep∼ N (X(a)β,ΣIC)

where ΣIC is a 5× 5 matrix whose elements are estimated.

Define age2 to take two values: one for age groups 0-17 and 18, the other for any of
the other age groups: 19-20, 21-39, 40-49, 59-64. The predictors in XIC for states
are as follows:

• Main effects for age, race/ethnicity, sex and IPR.

• All two-way interactions among age, race/ethnicity, sex and IPR.

• The two-way interaction between state and age2.

• Three-way interactions among:

– Age, race, and IPR.

– Age, sex, and IPR.

– Race, sex, and IPR.

• State mean log IPR, from tax records, interacted with IPR and with age2 by
IPR.

• State variance of log IPR, from tax records, interacted with IPR and age2 by
IPR.

4.2.3 Modeling Medicaid/CHIP enrollees

Let MEDm be the number of people enrolled in Medicaid or CHIP in a state by age
by sex category, denoted m. We assume that the mean, MEDm, is a function of the
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number insured in the 0-250 percent IPR category. We assume that the Medicaid
counts MEDm are independent, conditional on all N IC

ai and parameters. We have

MEDm| γ, α, λ
indep∼ N

(
MEDm, vm

)
MEDm = γskαN

IC
m1

γsk| δ ∼ Gamma (mean = 1, var = δ)

vm = λ0MED
λ1
m

where s is the state and k is the age2 category (as defined in section 4.2.2) of the mth

observation. N IC
m1 is obtained by summing N IC

i1 over the race/ethnicity categories
and the IPR categories 0-138 percent, 138-200 percent, and 200-250 percent. The
parameters α and λ0 vary by age by sex, δ varies by age2, and λ1 does not vary
by category. The γsk’s are state by age2 random effects with variance δ, and are
independent given δ. The γsk’s are multiplicative, rather than additive, effects
to ensure that the coefficients of N IC

m1 are always positive, while still allowing the
possibility that the γsk’s reduce the coefficient on N IC

m1.

5 The county model

For counties, the models for the ACS estimates of proportions in IPR categories
and of proportions insured are like those in sections 4.1.1 and 4.2.1. The model for
Medicaid/CHIP participation is like that in 4.2.3.

The regressions in the income and insurance parts of the model for counties have
different predictors than for states.

5.1 Predictors for county IPR and IC regressions

The predictor matrix XIPR for counties (as in Section 4.1.2 for states) includes the
following:

• Main effects for IPR.

• Two-way interactions between age and IPR, and between sex and IPR.

• The three-way interaction among age, sex, IPR.

• Log county population interacted with IPR, and with age by IPR (the coeffi-
cients can differ for small and large counties).

• Logit of the county proportion Hispanic, from demographic population esti-
mates, interacted with IPR and with age by IPR.

• County mean log IPR, from tax records, interacted with IPR and with age by
IPR.

• County variance of log IPR, from tax records, interacted with IPR and with
age by IPR.

13



• State, interacted with three IPR categories (0-200%, 200-400%, and 400%+).

As in Section 4.2.2, age2 takes two values: one for age groups 0-17 and 18, the other
for any of the other age groups: 19-20, 21-39, 40-49, 59-64. The predictor matrix
XIC for counties (as in Section 4.2.2 for states) includes the following:

• IPR, age, and sex categories and all their two- and three- way interactions.

• The three-way interaction among state, age2, and two IPR categories (0-200%,
200%+).

• Each of the following county-level variables, and its interactions with age, IPR,
and age2 by IPR:

– Log population, from Demographic Population Estimates.

– Mean log IPR, from tax records.

– Variance of log IPR, from tax records.

– Logit of the ACS 5-year estimate of the proportion of adults with less
than high school education.

• Each of the following county-level variables, and its interaction with age2,
IPR, and age2 by IPR:

– Logit of the ACS 5-year estimate of the proportion who are non-citizens.

– Logit of the proportion who are American Indian/Alaskan Native, from
Demographic Population Estimates.

– Logit of the proportion of adults who are employed by non-retail firms
of size 19 or less, from County Business Patterns.

– Logit of the proportion of adults who are employed by non-retail firms
of size 100 or more, from County Business Patterns.

– Logit of the proportion of housing units that are rural, from Census 2010.

– Logit of the proportion of housing units that are resident-owned, from
Census 2010.

5.2 Modeling county ACS 5-year estimates, IRS exemp-
tions, and SNAP counts

As with states, we model the means of the ACS 5-year estimates, the IRS exemp-
tions, and the SNAP counts as functions of the N IPR

ai ’s, summed to the appropriate
level. However, there are notable differences in how we model these data for counties.
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5.2.1 Modeling the ACS 5-year estimates for counties

For counties, we model the ACS 5-year estimates, ACS5ai, of numbers in county by
ARSH group a and IPR category i as follows:

ACS5ai|α, λ ∼ T
(
ν,mean = ACS5ai, var = vai

)
ACS5ai = α0N

IPR
ai

vai = λ0ACS5
λ1
ai

where ACS5ai is the ACS 5-year estimate and T is the t-distribution, parameterized
in terms of the degrees of freedom parameter, ν, and the mean and variance. We use
a t-distribution because when we fit the model assuming normality, some residuals
were too large to be consistent with the normality assumption. We did not observe
this with states. The parameter ν does not vary by category, α0 and λ0 vary by age
by IPR, and λ1 varies by IPR.

5.2.2 Modeling IRS exemptions for counties

Let t index county by the two tax age categories, 0-18 and 19-64, denoted age2. For
counties, we have

TAXti| ν, α, λ ∼ T
(
ν,mean = TAX ti, var = vti

)
TAX ti = α0N

IPR
ti

vti = λ0TAX
λ1
ti

where TAXti is the number of IRS exemptions in county by age2 category t and
IPR category i, and T is the t-distribution, parameterized in terms of the degree of
freedom parameter, ν, and the mean and variance. N IPR

ti is obtained by summing
N IPR
ai over the appropriate age and sex categories. As with the ACS 5-year estimates,

we use a t-distribution because when we fit the model assuming normality, some
residuals were too large to be consistent with the normality assumption. We did
not observe this with states. The parameters α0, λ0, and ν vary by age2 by IPR,
and λ1 does not vary by category.

5.2.3 Modeling SNAP participation for counties

Let c index county. For SNAP data, we have

SNAPc|N IPR, α, λ ∼ N
(
SNAP c, vc

)
SNAP c = α0

(
N IPR
c1

)α1

vc = λ0SNAP
λ1
c .

Here, N IPR
c1 is the number of people in a county in the 0-138% IPR category. The

parameters α0, α1, λ0, and λ1 do not vary by category.
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5.3 Prior distributions

For the Bayesian modeling, we generally use vague priors for the high level param-
eters. For the regression coefficients βIPR and βIC , we use the (improper) uniform
prior over the real numbers of appropriate dimension. For degrees of freedom pa-
rameters and multiplicative parameters in functions for means, we use truncated
normal distributions with large variances. For multiplicative variance parameters
(λ0 in most cases above) we use the (improper) prior 1√

λ0
. For parameters that are

exponents in variance functions, we use a uniform prior on (0, 3). For ΣIC in Section

(4.2.2), we use a Wishart prior on
(
ΣIC

)−1
. The prior mean is the previous year’s

estimate of
(
ΣIC

)−1
. The prior degrees of freedom is 6, which is one more than the

dimension of ΣIC .

6 Model selection

We made many modeling decisions to arrive at the current SAHIE models. In addi-
tion to the overall form of the model, these decisions include choices of predictors,
mean and variance functions, and distributions. We describe some of the criteria
we used in the next sections.

6.1 Model diagnostics

6.1.1 Standardized residuals

Some choices of mean, variance, and density functions resulted from perceived lack
of fit based on diagnostics we use. Our primary model diagnostic is a certain type
of standardized residual. For the survey estimates, ACS 5-year, and administrative
data that we model, we predict means and variances so that for any data, y, that
we model, we can obtain a form of standardized residual and squared residual

Eθ|data

[
y − E(y| θ)√

var(y| θ)

]
and Eθ|data

[
(y − E(y| θ))2

var(y| θ)

]
(12)

from the Markov chain Monte Carlo (MCMC) output used to fit the model. See
Chib and Greenberg (1995) for an explanation of MCMC. If the model is correct
and y is normally distributed, this standardized residual is distributed as approx-
imately normal(0,1). The standardized squared residuals should have a mean of
approximately one. We check that averages of these residuals over large groups of
observations are close to zero, and check for extremely small or large values. We
look at plots against various quantities such as the predicted mean, population,
predicted variance, and where appropriate, sample size. We also look at boxplots of
standardized residuals for different values of categorical variables such as age and
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IPR, and against quantiles of population. We check that the averages over large
groups of squared standardized residuals are reasonably close to one.

6.1.2 Posterior predictive p-values

Another model diagnostic that we use is the posterior predictive p-value (PPP-value)
(Gelman, Meng, and Stern (1996)). A posterior predictive p-value is a measure of
how surprising or improbable some function of the data (and possibly parame-
ters) is, under the posterior predictive distribution of that data. Let y represent
all of the data and θ represent all of the parameters. A PPP-value is defined as
Pyrep,θ|y(T (yrep, θ) ≥ T (y, θ)) for some function T where the probability is with re-
spect to p(yrep|θ)p(θ|y), the joint distribution of a replication of the data, yrep, and
θ, conditional on y. Let yi represent a single data point. We use the functions
T1(y, θ) = yi and T2(y) = (yi−E(yi|θ))2. Thus, the PPP-value corresponding to T1
is Pyrep,θ|y(y

rep
i ≥ yi). We refer to this PPP-value as the PPP-value for the mean

because many values near 0 or near 1 suggest that means given by the model are
generally too low, or too high, respectively. We refer to the PPP-value correspond-
ing to T2 as the PPP-value for the variance since it measures the surprise in the
squared distance between the data and its mean. We compute PPP-values for each
of the data sources in the model. We look at plots of PPP-values against various
quantities, such as population, posterior means, posterior variances, and sample
sizes. Our approach is to use the PPP-values informally to check for evidence of
model failure. Many values near zero or near one would suggest problems with the
model.

6.2 Selecting predictors for the regression parts of the in-
come and insurance models

In order to select predictors for the income and insurance parts of the model, we
generally consider the posterior means and variances of the regression coefficients.
We form an approximate 95 percent credible interval for the regression coefficient by
taking its posterior mean plus or minus two times its posterior standard deviation.
Generally speaking, we include a predictor in the model if the approximate 95
percent credible interval does not include zero.

7 Benchmarking

We benchmark SAHIE estimates of the numbers insured and uninsured in order to
make them consistent with a set of national ACS estimates, and to make county
estimates consistent with state estimates. We benchmark state estimates to a rel-
atively small set of national direct estimates of numbers insured and uninsured.
We benchmark all possible county estimates to the corresponding state estimates.
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The benchmarking procedure for counties is a simple proportional adjustment. The
procedure for states is more complex.

7.1 State to national benchmarking.

We benchmark the state estimates to ACS national estimates of insured and unin-
sured for the following categories:

• Age 0-18

• Age 0-18, IPR 0-138%

• Age 0-18, IPR 0-200%

• Age 0-18, IPR 0-400%

• Age 0-64

• Age 0-64, IPR 0-138%

• Age 0-64, IPR 0-200%

• Age 0-64, IPR 0-400%

• Age 0-64, Hispanic

• Age 0-64, Black not Hispanic

• Age 0-64, White not Hispanic

7.1.1 Methodology for state to national benchmarking

The benchmarking procedure we use was developed by Luery (1986) in the context
of controlling survey weights to control totals. The procedure is as follows. Let
B be the number of benchmarks (here, 14), and let N̂ = (N̂1, N̂2, . . . , N̂B)′, be
the benchmarks. Let A be the number of small area, or model, estimates, and let
Ŷ = (Ŷ1, Ŷ2, . . . , ŶA)′ be those estimates. We want to adjust the model estimates so
that their sums over states equal the benchmarks. Let b index the benchmarks, let i
index the area (here, state by ARSH by IPR by insured/uninsured). Let X = (xib)
be the A x B matrix such that xib = 1 when area i contributes to benchmark
b, and 0 otherwise. Then the adjusted estimates Ŷ ∗i meet the constraints when∑S

i=1 xibŶ
∗
i = N̂b for all b.

We want a set of benchmarked estimates that are, in some sense, optimal. Gen-
erally, benchmarked estimates are preferable when they are close to the original
estimates. We choose to minimize the relative quadratic loss function

S∑
i=1

(Ŷ ∗i − Ŷi)2

Ŷi
. (13)

That is, we minimize the squared change from the original to the benchmarked
estimate, relative to the size of the original estimate. It can be shown that there
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exists a unique set of Ŷ ∗i that sum to the benchmarks and minimize (13). This
optimal set of benchmarked estimates, Ŷ∗ = (Ŷ ∗1 , Ŷ

∗
2 , . . . , Ŷ

∗
A)′ is given by

Ŷ∗ = Ŷ + D(Ŷ)XP(N̂−XTŶ) (14)

where D(Ŷ) is a diagonal matrix with the entries of Ŷ along the diagonal and
P = [XTD(Ŷ)X]−1.

For the ith area, this can be written as

Ŷ ∗i = Ŷi

(
1 +

B∑
b=1

fbxib

)
(15)

where the fb are the B factors given by F = (fb) = P(N̂−XTŶ). Thus, the choice
of the relative quadratic loss function ensures that if two areas i and i′ have the same
indicators, that is, if xib = xi′b for all b, then they receive the same proportional
change to their estimates, as given in (15).

7.1.2 Variance of state benchmarked estimates

We estimate the models using MCMC methods in which a procedure for generat-
ing values from the posterior distribution of all unknown variables is repeated for
many iterations. We can obtain an estimate of the variance of the benchmarked es-
timates by repeating the benchmarking procedure at each iteration of the MCMC,
using each time a newly generated set of unbenchmarked estimates. However, the
benchmarking totals themselves are estimates, and have some uncertainty. If we
treat them as fixed in the benchmarking procedure, we will likely underestimate the
uncertainty in the benchmarked estimates.

We address this issue as follows. We have an estimated covariance matrix for the
ACS national estimates we benchmark to. These estimates are large, so they should
be close to jointly normal. We approximate the distribution of the benchmarks by
assuming that their posterior distribution is multivariate normal, with mean vec-
tor at the ACS direct estimates, and with the estimated covariance matrix. Then,
in each iteration of the MCMC, we draw a vector from this approximate distribu-
tion which serves as the benchmark totals. We then perform the benchmarking
procedure, controlling to these generated totals. In this way, the variability in the
benchmarked estimates will come from both the variability of the unbenchmarked
estimates and the variability of the benchmark totals, as it should.

7.2 Methodology for county to state benchmarking

We benchmark county estimates so that in each state, the county estimates for
insured and uninsured in each age by sex by IPR group sum to the benchmarked
state estimates. For each cross-classification of age, sex, and income, we apply an
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adjustment factor to the county estimates of the number insured and the number
uninsured so that the sum of the county estimates equals the state estimate. Let c
index counties, j index age by sex categories, i index income categories, and s index
states. The adjusted estimate of the numbers insured and uninsured are given by

N̂ IC,adjusted
cji =

N̂ IC
sji∑

c N̂
IC
cji

N̂ IC
cji N̂UI,adjusted

cji =
N̂UI
sji∑

c N̂
UI
cji

N̂UI
cji

where N̂ IC
sji and N̂UI

sji are state estimates of the insured and uninsured for age by sex
by income categories,and the sums are over the counties, c, in state s.

For variance estimation, in order to take into account the fact that the state
estimates have error, we perform the adjustment procedure in each iteration of the
MCMC similar to that for state to national benchmarking. In each iteration of the
MCMC, we simulate the state control from a normal distribution whose mean is the
state estimate and whose variance is the variance of the state estimate.
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